roots of quadratics

1. [SQA]

- (i) Write down the condition for the equation $ax^2 + bx + c = 0$ to have no real roots.
- (ii) Hence or otherwise show that the equation x(x+1) = 3x 2 has no real roots.
- 2. Show that the roots of the equation $(k-2)x^2 (3k-2)x + 2k = 0$ are real. [SQA]
- 3. Given that *k* is a real number, show that the roots of the equation $kx^2 + 3x + 3 = k$ [SQA] are always real numbers.

4. (a) The point A(2, 2) lies on the parabola [SQA] $y = x^2 + px + q$. Find a relationship between p and q.

(c) Using your answers for p and q, find the value of the discriminant of $x^{2} + px + q = 0$. What feature of the above sketch is confirmed by this value?

(a) f(x) = 2x + 1, $g(x) = x^2 + k$, where k is a constant. 5. [SQA] (i) Find g(f(x)). (2)Find f(g(x)). (ii) (2)Show that the equation g(f(x)) - f(g(x)) = 0 simplifies to (b) (i) $2x^2 + 4x - k = 0$. (2)Determine the nature of the roots of this equation when k = 6. (ii) (2)

> Find the value of k for which $2x^2 + 4x - k = 0$ has equal roots. (iii) (3)

A(2,2) x

(2)

(6)

1

2

4

5

[SQA] 6. Diagram 1 shows a rectangular plate of transparent plastic moulded into a parabolic shape and pegged to the ground to form a cover for growing plants. Triangular metal frames are placed over the cover to support it and prevent it blowing away in the wind.

Diagram 2 shows an end view of the cover and the triangular frame related to the origin O and axes Ox and Oy. (All dimensions are given in centimetres.)

- (a) Show that the equation of the parabolic end is $y = 40 \frac{x^2}{100}, -20 \le x \le 20$.
- (b) Show that the triangular frame touches the cover without disturbing the parabolic shape.

[SQA] 7.

- (*a*) Write the equation $\cos 2\theta + 8\cos \theta + 9 = 0$ in terms of $\cos \theta$ and show that, for $\cos \theta$, it has equal roots.
- (*b*) Show that there are no real roots for θ .
- [SQA] 8. For what range of values of k does the equation $x^2 + y^2 + 4kx 2ky k 2 = 0$ represent a circle?
- [SQA] 9. For what value of k does the equation $x^2 5x + (k+6) = 0$ have equal roots? 33
- [SQA] 10. Calculate the least positive integer value of k so that the graph of $y = kx^2 8x + k$ does not cut or touch the x-axis.

(7)

(4)

5

3

1

3

4

[SQA] 11. Find the values of *k* for which the equation $2x^2 + 4x + k = 0$ has real roots.

[SQA] 12. The roots of the equation (x - 1)(x + k) = -4 are equal. Find the values of *k*.

[SQA] 13. For what value of *a* does the equation $ax^2 + 20x + 40 = 0$ have equal roots?

- [SQA] 14. Show that the equation $(1-2k)x^2 5kx 2k = 0$ has real roots for all integer values of k.
- [SQA] 15. Find the possible values of *k* for which the line x y = k is a tangent to the circle $x^2 + y^2 = 18$.

[END OF QUESTIONS]

2

5

2

5

5